______

AD-A161 838

US ARMY

EuAAHD CONTRACT REPORT BRL-CR-544

DTIC FITE CoPY

AD

Z

LAGRANGE MULTIPLIER/SEGMENT PROCEDURE
' FOR SOLUTION OF THREE-DIMENSIONAL
' CONTACT PROBLEMS |

Massachusetts Institute of Technology‘
. Mechanical Engincering Department
Cambridge, MA. 02139 '

' October 1985 DTiC

ELECTE
DEC2 B
A

APPROVED FOR PUBLIC RELEASE; DISYRIBUTICN UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

| 85 11 96 (3,




~

::-_ s .

o

b3 |

1y Destroy this report when it is no longer needed.
o Do not return it to the originator.

Ly

s\

)

¥

AN Additional copies of this report may be obtained
) from the National Technical Information Service,

U. S. Department of Commerce, Springfield, Virginia
b 22161. '

a “(:‘

Sy

S

K

i

‘\ The findings in this report arc not to bo construed as an official
N Department of the Army position, unless so designated by other
“Q authorized documents,

X The use of trade names or manufacturers' names in this report
B v does not constitute indorsement of any commercial product.

N

B! J

-
"
R
+




IINCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF%%%Dclgﬁgggggg?om

1. REPORT NUMBER 2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALGG NUMBER

CONTRACT REPORT BRL~CR- 544 v-A1 6l 5’3 57

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A LAGRANGE MULTIPLIER/SEGMENT PROCEDURE FOR Contract Report

SOLUTION OF THREE DIMENSIONAL CONTACT PROBLEMS January 1984 to August 1984
€. PERFORMING ORG. REPORT NUKMBER

7. AUTHOR(a) %, CONTRACT OR GRANT NUMWBER(a)

A. B. Chaudhary DAAK11-84-K -0015

K. J. Bathe

9. PERFORMING ORGANIZATION HAME AND ADDRESS 10. PROGRAM EL EMENRT, P o.nscr TASK

Massachusetts Institute of Technology AREA & WORK UNIT nuuB

Mecharical Engineering Department; Rm. 3-356 1L161102AH43

Cambridge, MA, 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Ballis:ic Research Laboratory October 198:

ATTN: SLCBR-DD-T 13. NUMBER OF PAGES

Aberdeen Proving Ground, MD. 21005-5066 76

T MONITORING AGENGY NAME & ADDRESS(If different fram Cantrolilng Oflice) | 3. SECURITY CLASS. (of thie repor)

Unclassified
132, DEGLASSIFICATION/ DOWNGRADING |
. SCHEDULE

16. DISTRIBUTION STATEMENTY (of this Regort)

Approved for public release; Distribution unlimited.

17. GISTRIBUTION STATEMENRT (of tha adetract satersd in Block 20, If dilferant trom Kepor)

0. SUPPLEMENTARY NOTES

This work was performed under contract to the Blast Dynamics Branch, Ters nal
Ballistics Division, US Army Ballistic Research Laboratory,

Dr. Joseph M. Santiago, Contracting Officer's Representative,

Key vionos (Cmfk;tn ot reverse slde (I necossny wsd identity by biock Aureder)

ADINA Finite Element Propram

Contact Problem Algorithm, ~- Frictional Sliding and Sticking COnt:ac.t,A
Finite Element Structural Analysis Implicit Sclution Technique,

Lagrange Multiplier Contact Forces. Hertz axisymmetric contact, ¢. .
Multiplier/Segment Procedura Longitudinal Impact of bars, N

0 ABSTRACT (Conifave ow reverse siis ¥ nocoscaty sad tdontily Dy Slock numbder)
A solution procedure for finite element analysis of three-dimensional contact
conditions is presented. The area of coatact can vary, frictional conditions
are included using Coulomb's law of friction and static or dynamic conditions
can be considered. Various sample solutions are presented to demonstrate the
applicability of the solution algorithm. >

« N

poest oo ,

DD ,"Sh% I3  eomion oF ' wov es s casoLETE UNCLASSIFIED

SECUMYY CLASSIFICATION OF THIS PAGE (Bhen Dels Sntared)




I1.

11,
v.
V.

VI.

TABLE OF CONTENTS

LIST (F FIGURES - * - LI . L] . * . L 4' . * . * * . L] - L] * * . . 5
INTRODUCTION . . L4 . L] * * . - . . . L] * L ] . * . * . L] L] A4 . L] * 7
SOLUTION METHOD FOR CONTACT - STATISTICS . v ¢ v ¢ v v o v o v o 7

2.1 Discretization of the Contactor and Target Body Surfaces by
Surface Segments. . . . . . ¢ . . S L
2.2 Constraints on Incremental Surface D\Sp1acements Due to
con tact . . L] L] . - . . - . * - . L] - L] L ] L] . . . - L d L] L] . 16

2.2.1 Constraints on Surface Displacements Due to the

Condition of Sticking Contact at Node k . . . .. .. .18
2.2.2 Constraint on Surface Displacements Due to the

Condition of Sliding Contact at Node k. . . « + + . + . 20
2.2,3 Condition of Tension Release at Node k. . . « « « « . . 21

2.3 Incremental Equations of Equilibrium for Contact. . . . . . .21
2.4 Contact Matrices for Sticking Contact and Sliding
con tac t . L[] L ] * L ] . . L [ 3 . L * . . *> . [ ] L] L] . * L] * L] L 2 L] L ] 2 3

2.4.1 Condition of Sticking Contact . . « « v ¢« ¢« ¢« ¢+ « . . 24
2.4.2 Condition of Sliding Contact . . .. .+ ...+ 4. .26

2.5 Evaluation of the Contact Forces After Iteration (i-1), . . .27
2.5.1 Recovery of Segment Tractions on the Contactor

Sur face L] L] L] L] . * L [ ] L] » [ ] » » . L] L] . ] [ ] L] + . v L ] 29

2.5.2 Friction Update of Segment Tractions. . « + « ¢« o o« + & 32

2.6 Evaluation of the Conditions of Sticking, Sliding, and
Tension Release at the Contactor NodeS. + « « ¢ v « & o o « + 38

SOLUTION METHOD FOR CONTACT - DYNAMICS. . . . . ¢ o ¢ v o ¢ o+ . 38

ITERATION STRATEGY AND CONVERGENCE CRIVERIA . . . . .. ... . .4

TIME INTEGRATION OF THE EQUILIBRIUM EQUATIONS FOR DYNAMIC
Cm rAcT » L] * [ ] . L) . * - . . L . [ [ ] L 2 * L L L L] L d - L » L . * - 42

“UERICAL S&UTIwS L L ) e L] L] L ] L} . * (] » L ] L ] L ] [ ) [ ] L ] L2 L ] L] » L] * 44
6.1 Analysis of Axisymmetric Hertz Contact Problems . . . . . . .44
6.1.1 Finite Element Discretization . . . . « « ¢ » ¢ +» . . . 49

6.1.2 Static Analysis . . . . . Y
6.1:303"“\'(: “"a]ySiS- ® o ¢ ¥ e e e & e ® & © = " ¢ o l49




P $=

LS P

s

RS

¥,
(ot
ol
o

S

e E;‘k&" e

ey "g‘f’r" e
ol B e

“

[ £
:1. ','gi"&i’ - ol V e
e IRl i A h p

ol 3

:‘,a:
SRR

TABLE OF CONTENTS (Continued)

6.2 Analysis of Compressed Spheres Subjected to

Torsional Moment. .« « « ¢« ¢ ¢ ¢ o o o o o o o

6 .3 Dynamic Analysis of Frictional Sliding of A
Point Mass. « « v ¢ v o 0 v o o 0 0 0 6 s

VII. CONCLUDING REMARKS. + & v ¢ v v ¢ v ¢ o o o v
REFERENCES. « v v v ¢ o v ¢ o s s o o o o v o s
LISTOF SYMBOLS & v v v v v 6 ¢ o o o o s o o s
DISTRIBUTION LIST & & v v ¢ 4 ¢ v ¢ ¢ o o o o

Jj»

Acceslon For

| /
TNTis cragd g
DIIC TAB

Unannou..cud

Justitication ...
et =

By .n;-u.unuluu--wlo‘-au'w‘
Dists ibution ] R |
_‘-‘_-—M“‘"--wxw - R S
Y "' )S
Availabllity Co L}

Avdi" TN L i
ist S, St

Pf" IR

Q
oo
miduanalytmbicd-|

Page

* 49
. 55

. 58
. 63
. 65
. 69




LIST OF FIGURES
Figure : Page
l. Schematic representation of problem considered

(2) Condition prior to contact =« « « o o o o o o s .o 2 o s o o o
(b) Condition at contact « « o« o o o + ¢ « o s o o o o o o o o
(c) Reglon of contact « « « « o o ¢ o « ¢ o o o o o o o o o s o o1
(d) Statistically equivalent nodal contact forces on the

contactor and target surfaces « « « « 4 ¢ ¢ o ¢ o o ¢ ¢ o o o 12

-0 ®

2. Geometry approximations for contactor and target segments

C

(a) Normal vector Eqito contactor segment J ¢ « o + o ¢ ¢ ¢ o o « 13

(b) Normal vector anto the target segment J«¢ « ¢ ¢ ¢ ¢ ¢ ¢ ¢ » « 13

(c) Triangle ABO of the target segment j. « o+ + o « s o ¢ o s o« » 15

3. Contactor node k in contact with triangle ABO of target
segmentj......o.--.-................17

4. Condition of sticking contact at contactor node kK « « s « o « o o 19
5. Contactor segment traction disteibution « ¢ o o ¢« o o ¢ ¢ o + o + 30

6. Contact region comprised of six contactor segments in
contact and two solitary nodes in contact « o« « o « ¢ o s o o o & 37

7. Analysis of longitudinal impact of identical bars
{a) Problem considered « « s ¢ o s o s o 5 o s 5 s 5 0 s s s s o 45

(b)FinitEEIEEQBtNOdelntcuynooot.ocoococoloaﬁ.
(c) Impact stress in element number 1 . o o o« o o+ & 47

.
-
-
.
.
»
3

8. Analysis of Hertz axisymmetric contact problen

(3) Problem consddered . + ¢ ¢ ¢ o o ¢ 4 ¢ s s o s s 0 0 0 s o & 4B

(b) A wzipe from the sphere continuum considered in
tllee.tia‘i"jsis'v.....-............-......50

(¢) Finite element discretization of the wedge. . . 51

L ]
L
-
-
.
.
-

9. Solution to the Hertz axisyametric contact problem
(etatics) L . L4 L] » . L . L L ] L] » L] ] * . L] L ] L] . L ] L[] L] [ ] L ] . L ] * 52

10. Solution to the Hertz axisymmetric contact problem
(dynamiCS) . . . . L] . L] L] . * [ ] * [] . L] L] . . ] L] . . ’ . L ] L] L] L 53

11. Analysis of compressed spheres subjected to a torsional
mom“t . L] * L] L] L » L] L ] L] L ] L . - . . L . - L] [ ] L] L] * [ ] * [ ] L] [ ] - SA




LIST OF FIGURES

W Figure : Page

12. Solution to the problem of compressed spheres subjected to
atWiatinSmomentcooooao0-00.0-..0-00-.0.56

13. Dynamic analysis of frictional sliding of a point mass

(a)Problemconsidered-------.--.------..o--57
(b)Finiteelementmﬁdelusedo000.00.000'0‘000059

14. Displacement time history of che sliding mass

(a) Case 1 (time astep At = 001 seconds)s « « ¢« ¢ s ¢ ¢ s ¢« o o« o 60
(b) Case 2 (time step At = 0025 seconds)e o o o ¢ o ¢ ¢ o ¢« o« o 61

S M A L L

. R

LN 0
A R )

2t I s e el

.

R




I. INTRODUCTION

Although much progress has been made during the last decade in the
development of computational techniques for nonlinear analysis, there is
still a lack of effective solution methods for contact problems. This
is largely due to the fact that the analysis of contact problems can be
computationally very difficult, even for the simplest geometric
conditions and constitutive relations used. Much of the difficulty
lies in that the boundary conditions of the bodies under consideration
are not known prior to the analysis but depend on the solution
variables. -

In two earlier communications we presented a solution method for the
analysis of general two-dimensional (plane stress, plane strain and
axisymmetricg contact conditions [1 23. The objective of this report is to
present an algorithm for three-dimensional contact problems. The solution
procedure is an extension of the Lagrange multiplier/segment algorithm,
discussed in our earlier work, to three-dimensional analysis and in this
report we assume that the reader is familiar with the developments of
References [1 2] and the notation of Reference [3].

The Lagrange multiplier/segment algorithm can be employed for three-
dimensional large deformation contact problems with variable contact areas,
and in static and dynamic conditions. In the following sections we first
present the basic equations used in the solution algorithm and discuss the
jmportant numerical details. We then give the solution of various example
problems to demonstrate the applicability and limitations of the algorithm
used. The report concludes with some thoughts on future developments that
shog}d be pursued to arrive at improved solution methods for contact
pt‘O ems, ’

" I1. SOLUTION METHOD FOR CONTACT - STATICS

The problem considered herein deals with the stress analysis of two
bodies, contactor and target, when their boundaries come into contact with
each other under the action of external loads (see Fig. 1). The occurrence
of contact can be at any arbitrary location on the body boundary and the
basic geometric condition of contact fs that no material overlap can occur
between the bodies. Depending on the external loads, large changes in the
region of contact are possible including relative sliding or possible
separation after contact. The developed forces of contact on the two bodies
must be statically equivalent to each other and for each hody the support
reactions must be in equilibrium with the externally applied forces and the
contact forces.
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Although the discussion focuses on two bodies coming into contact with
each other, the solution method is also applicable to the analysis of
more than two contacting bodies. In that case, one contactor body comes
into contact with more than one target body and vice versa. The
calculations for contact are performed for each contact region separately
and the combined effect ontc the incremental equations of equilibrium is
obt:iged by summing the individual contributions by the direct stiffness
met o L]

2.1 Discretization of the Contactor and Target Body Surfaces by
Surface Segments

Both the contactor and target surfaces are discretized using four-node
quadrilateral segments (see Fig. lc). Considering the finite elements which
are used to discretize the continuum of a body, a generic surface segment
corresponds to a finite element face that lies on the body boundary.

In the incremental finite element solution, the contactor surface nodes
are considered to come into contact with the target segments. A contactor
segment is defined to be in contact if all four nodes belonging to the
segment are in cortact with the target surface (see Figs. lc.d?.

In general, \he surface segments are non-flat and therefore the
following three geometric assumptions are used in the solution procedure:

o For a generic contactor segment, j, the normal vector for the entire
segment is approximated by the exact normal to the segment surface

at (r=0,s5«0), denoted as gjc.(see Fig. 2a). The vector ﬂjc is

used in the calculation of the total normal contact force developed
over segment j (see Section 2.5).

e For a generic target segment, j, the normal vector for the entive
segment 1s approximated by the exact normal to the segment surface

at (r«0,s=0), denoted as ng (see Fig. 2b). The vector ng is used

in the calculation of constraints on incremental surface
displacements due to contact (see Section 2.2).

10
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-l\ Y
'5:‘ e For a generic target segment, j, the geometry of the segment surface
j\a; is approximated by four triangles which have one common vertex, 0,
i (r=0,s=0)'(see Figs. 2b,c).” Then, considering a generic triangle ABO,
X the coordinates of any point P within the triangle zre giveu by
+ At
t+At§P - t+At§A +pt At)-(B iyt t’-‘o (1)
where,

s a,B,y = triangular area coordinates of point P at time t+At
ol - teat,

4! _A,t+At§B = global coordinates of target nodes A and B,

2@ respectively at time t+at .

u that i ) eeQ)

ey : % = global coordinates of vertex 0 (r=0,5=0) at_

;. time t+at,

T ’}}%‘

i "

Y Also, using the bilinear interpolation functions,

A ‘ , .

, N o teat, _ o, rteat, | tHat t+at, . teat ¢

. =0T T g T K T X (2)

W ‘ o

b } where,

e

't-':“\'f t+At§c. “At:_co = global coordinates of target nodes C and 0,

o respectively at time t+at.

KX
)

3

_v.-h’ , Substituting Eq.(2) into Eq.(1), we obtain

ey

D) v ,

AN that, Ly [(4a L PN L LN L L. LS TS
il -p <A -8 =C <DJ.

b - |

i :

g U4 Equation (3) is used in the calculation of constraints on incremental -
o , surface displacements due to contact {see Section 2.2). -

= S o

)

2
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2.2 Constraints on Incremental Surface Displacements Due to Contact

After the two bodies have come into contact, the incremental
contactor surface displacements must be compatible with the incremental
target surface displacements so that the current conditions of sticking
contact and sliding contact between the contactor and target surfaces
are satisfied. This compatibility of surface displacements is only
enforced at the discrete locations corresponding to the contactor nodes.
As a result, in an equilibrium configuration, the contactor nodes cannot be
within the region of the target body, but the target nodes can be inside or
outside the contactor body.

In the iterative solution, the conditions of sticking contact,
sliding contact, and tension release at the contactor nodes for the
beginning of the next iteration are determined from the contact
conditions of the surface segments (see Section 2.6). The necessary
geometric constraints to enforce the condition of contact for the
incremental displacements at a generic contactor node are discussed in
this section. The calculation assumes that the solution response is
known at time t and that (i-1) iterations have been performed to
calculate the solution at time t+at.

Figure 3 shows how a contactor node k has come into contact with the
target segment j formed by nodes A, B, C, and D. Defining point P to be the
physical point of contact of node k in the triangle ABO, such that

teat, (1-1) , teat, (i-1) _ teat, (i-1) (4)
-P .k -k
where,
t+At5k(i”1) = current global coordinates of node k after
iteration (i-1) for the equilibrium configuration

corresponding to time teat

t*Atgk(f'l) e material overlap at contactor node k. The calculation
of overlap is such that the vectors t*Atgk(i'l) and
! are paraliel to each other.

)
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2.2.1 Constraints on Surface Displacements Due to the Condition'of
Sticking Contact at Node k

For a contactor node k in sticking contact, the incremental
displacements in iteration (i) are such that (see Fig. 4)

t+Até (i-1)

e the material overlap, K , is eliminated

e the physical point of contact (point P in Fig. 3) with the
target segment remains unchanged

Then,
t+At§k(i) - t+At§P(i) . (5)

Subtracting t+At§p(i'1) from both sides of Eq. (5),

t+At§k(i) . t+Ag§P(i-1) - t+At§P(i) . t+At§p(1-1) (6)

Substituting Eq. (4) into Eq. (6) and rearranging, we obtain,

Agp(i) s A!k“) + t+At.A.k(i-1) (7)

where,

Agp(i) = incremental displacement of point P in iteration (i)
Agk(i) = incremental displacement of node k in iteration (1) .

Using Eq. (3) and assuming an isoparametric interpolation, we hence obtain
the following constraint eguation,

i[Q(A‘.‘k(i) . t+Atek(i-1)) - (@D iy ()

(aalie1) 4 (1D (1) (8], (0) _Y(i-nﬁgum] - 0.

(8)

18
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also see Fig, ¢ )
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where,

a(i'l), B(i'l), y(i;l) = triangular area coordinates of
point P-after iteration (i-1)

(1) (1) . incremental displacements at target
nodes A, B, C, and D respectively,

in iteration (i)

(i) ,, (i)
Aup’ Ta BT 8UeT AU

Equation (8) is the constraint of compatible surface displacements for
sticking contact between the contactor node k and the target segment j.
Equation (8) is used in the calculation of the incremental eguations of
equilibrium [1]. '

2.2.2 Constraint on Surface Displacements Due to the Condition
of Sliding Contact at Node k

For a contactor node k in sliding contact, the incremental
displacements of iteration (i) are such that

t+Aték(i-1)

e the material overlap, » is eliminated

¢ the physical point of contact with the target segment can change,

The area coordinates of the physical point of contact after iteration (i)

are unknown. So, assuming the amount of sliding in iteration (i) to be small
and linearizing about the geometry after iteration (i-1), an approximate
constraint of compatible surface displacements for sliding contact is obtained
as

T . |
(QJT) [t+dtép(i) - t+At£P(i-1)] 0 (QjT) [t+At§k(i) . #+Atﬁp("¥)] (9)

Substituting Eq. (4) into Eq. (9) and rearranging, we have
T T
(QJT) [Agp(i)] 2 (QJT) [Agk(i) + t*Aték(i'l)] (10)

Using Eq.(3) and assuming an isoparametric interpolation, we hence obtain

20




3 (QJT)J[4(Agk(i) + t+Aték(i-1))_' (4a(i'1) + Y(i-l))AgA(i)

- (4B(i'1) + Y(i-l))AU (i) - Y(i-l)AU

iy c“)-Y“'”Aeo(”] 0. (1)

Equation (11) represents a constraint equation on surface displacements
for sliding contact between the contactor node k and the target segment j.
Equation (11) is used in the calculation of the incremental equations of
equilibrium [1].

2.2.3 Condition of Tension Release at Node k

For a -contactor node k which experiences tension release after
iteration (i-1), the incremental nodal displacements of iteration (i) are
independent of the target segment displacements.

2.3 Incremental Equations of Equilibrium for Contact

The governing equations of motion prior to contact are derived using
the procedures described in Reference 3. The solution response of the
contactor and target bodies is independent of each other and the unknowns to
be calculated in each iteration are the incremental nodal point dispiacements.

After the occurrence of contact, the effects of constraints on incremental
surface displacements (see Eqs. (8) and (11)), are included in the equilibrium
equations using a Lagrange multiplier technique [1]. The unknowns to be
calculated in each iteration are the incremental nodal point displacements
and the incremental contact forces (however, the calculated numerical values
of these incremental contact forces are not used subsequently in any contact
calculations, see Section 4). The equilibrium equations for iteration (i)
at time t+it are:

21




1

f
t+A§5(i-1) 0
+
Y] 9
\
t+A§B
0
where,
t+A§5(i'1) =
t+At5(i-1) .

teat, (i-1)
<C

t"'AtK (i"l) e
T

t+AtEA(i-1) .

t*AtR

N\

0 t+At5§1-1) aut)
T ( .
t+AtF(1’-1) t+AtR(1'-1)
- =
- + (12)
t+at, (i-1)
9 A
t+At5c(i'1) g
(13)

Usual tangent stiffness matrix including material
and geometric nonlinearities after iteration (i-1)

Usual tangent stiffness matrix for the contactor body
after iteration (i-1)

Usual tangent stiffness matrix for the target body
after iteration (i-1)

Contact matrix to include the constraints of
compatible surface displacements after iteration
(i-1) (see Section 2.2)

Vector of total applied external forces at time t+at
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P x

K.

?g

'gh' t+Atf(”1) = Vector of nodal point forces equivalent to element
38 stresses after iteration (i-1)

o9 ‘

. t+Ath(1 . Vector of updated contact forces after iteration
o (i-1) (see Section 2.5)

t+at, (i-1) |

8¢ Vector of material overlaps at contactor nodes after

iteration (i-1) (see Section 2.2)

STy

N Ag(i) = Vector of incremental nodal point displacements in
o iteration (i)
N .
.Ai A5(1) = Vector of increments in contact forces in iteration (i)
[ (see Section 4), -
. In Eq. (12), the second row corresponds to the constraints on incremental
'§ surface displacements due to contact. The increments in contact forceg.
_gﬁ Ai(’). enforce the constraints of contact for iteration (i) (i.e., ql(')
ﬁﬁ are Lagrange multipliers).
W
A A1l surface nodes which belong to the contact region contribute to the
fj contact matrices, t+°t§A(1'1). t+Ath('°1). and t+°tgc("1). The sum total
4
2; effect of all surface nodes on the contact matrices is obtained by sumning

the individual contributions using the direct stiffness method.

LD

The calculation of B¥Atg(1=1) thatp ~ang t4ate(1=1) 4o porformed
using the usual procedures (see Reference 3).

2.4 Contact Matrices for Sticking Contact and Sliding Contact

In this section, the matrices t*afﬁk(i"l); t+Ath(i-1). and t*otgc(i'l)

are given for 3 generic region of contact consisting of the contactor node k
and its target segment of contact j (see Fig. 3). .

PRIy
o

k2

oD
%

1

.2

o %
”
&
ot
b4
)
L4

P

23




2.4.1 Condition of Sticking Contact

The matrices for sticking contact are:

I 1
paali-1) 4 (i-1)y g
tatg (-1 o yagli=1), (01 g (18) ‘
(15 x 3)
*Y(i‘l) 1
(-l 1
= -
teat, (i-1)
*k :
. *(%(i-l) . Y(i-l)) ”‘\t&k“'l)
y tfmtgc(i-l) N “48(1’-1) . Y(i-l)) tmték(iel)- | (1s)
(15 x 1) | .
RIRY tMtAk(i-l)
4 -
n ;
é‘:i S .
Ay - gy lis1) teat, (i-1)
: : e

b,

oo Wi s
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i. §

| '
3y
'!h’::':‘h
15
NG .
ANAK t+at, (i-1) _ t+at, (i-1,
o RS et (16)
bl (3 x1)
-
.
Wi where,
1 0 0
1 = o 1 0 (17)
0 0 1
= identity matrix; (3 x 3)
t+At5k(i'l) = Contact force at contactor nc ie k after iteration
(i-1) corresponding to the x.y, and 2 coordinate axes
(see Section 2.5).
Also, the solution vector for iteration (i) is
»d (i) -
ﬂgk
‘ ﬁyg(i)
autt) ' i
o I AL
4 Wyl | (18)
a2 (1) | |
oAy oy :
o : i)
- (1)
X -A'k .
55 '
R (i) |
3;§ , . where g3 "7 is the vector of increments in the contact force at contactor
= ' node k in iteration (i).
?§§

A A e N R T SN L L 0

'

T T,




.,

3ﬁuﬁ§ Note that by substituting Eqs. (14), (15),and (18) into Eq. (12) the
:G;ﬁi constraint of compatible surface displacements for sticking contact s
‘u§§; generated (see Eq. {8)). Thus, to enforce sticking contact, three individua’
fg%% "-equaiions &are necessary to constrain the x,y, and z incremental displacements
e of node k to the x,y,and z incremental displacements of point P respectively

- (see Fig. 4).

i

By

-

é%; 2.4.2 Condition of Sliding Contact

.-'&

ffﬁ The matrices for sliding contact are:

,, 8 ' T 7
. o

H

t+AtEA(1-1) = 3 (48(1"1) + Y('l'l)) ﬂ-,T (19)

¢}§: (15 x 1)

S B
IR
B

e
8 (i-1) T

.iiﬂv}’ R ﬂJ

}. b L

i
3
7

b

o

Loy

3

@
. -
ﬁ

.

T
t+Até (i-1) T t+Aték(i-1)].

¢ & ( (ﬂj (20)
(1x 1)
The vector t+°tgc(i'l) for sliding contact is as given in Eq. (15). The

solution vector for iteration (i) is

26
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o,

= (21)

where Alk(') is the increment in the normal contact force at contactor node k

in iteration (i). Or,
qik(’) s Axk(‘) ﬂéT (22)

Note that by substituting Eqs. (19), (20) and (21) into Eq. (12), the
constraint of compatible surface displacements for sliding contact is generated
(see Eq. (11)). Thus, to enforce sliding contact, one equation is necessary to

constrain the incremental displacement of node k along the direction ng to the
incremental displacement of point P along the same direction ng (see
Section 2.2).

2.5 Evaluation of the Contact Forces After Iteration (i-1)

After each iteration, the generated contact forces at the contactor nodes
are updated such that Coulomb's law of friction is enforced in a global sense
over each contactor segment [1 2]. The contact forces at the target nodes are
updated such that they are statically equivalent to the updated forces at the
contactor nodes. The updated nodal contact forces are the elements of the

vector t*Atgc(i'l) {see Eq. (15)).
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‘m_:‘

-3;i For a generic contactor node k which belongs to the region of contact,
“;Q; the contact nodal point force vector prior to updating, Agk("l). is

&w obtained as '

Lty

3

s
'.iﬁ where t+At£k(i'1) and t+Atgk are the elements of vectors t+At§(i'1) and

fﬁﬁ t+At3 corresponding to the degrees of freedom of node k respectively.

198

Considering all contactor nodes belonging to the contact region, the
vector of nodal point contact forces prior to updating is denoted as

3 :ﬁ#ﬁ

) Ag(ifl) ard the elements of Ag(i'l) corresponding to node k are denoted as
3'*' A-R.. (1-1)’
< .
'Qif Physically, Agk(“l) is (minus) the out-of-balance force vector usually
'Eﬁ encountered in nonlinear analyses without contact conditions. In the gresence
;Eg of contact, when convergence is reached after iteration (i-1), Agk(i'l
'ﬁﬂ . is equal to the contact nodal point force vector at node k (see Fig. 1d).
$§ The updated contact forces after iteration (i-l), t+Ath(1-1)’ are
_gj calculated from the contactor surface nodal forces, Ag("l), in the following
: three steps: :
#,
)
3R
«g ® Distributed segment tractions are recovered on the contactor surface
§5 such that they are gquivalent {in the virtual work sense) to the nodal
iy contact forces, sr(11),
5
Q{
_”; e The distributed contactor segment tractions are updated to satisfy
o Coulomb's law of friction. The updated contactor surface nodal forces
?ky are obtained as the consistent nodal loads corresponding to the
B updated segment tractions.
T
1{‘ e The target surface updatec nodal contact forces are obtained from the
3 contactor surface updated nodal forces by considering static equilibrium
N of the contact region after iteration (i-1) (see Fig. 3 and Eq. (15)).
5
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2.5.1 Recovery of Segment Tractions on the Contactor Surface

The segment traction recovery calculation uses the following two
assumptions:

® The interpolation of tractions over each contactor segment is
bilinear.

- - ® The tractions are continuous across the segment boundaries.
. Figure 5 shows the distribution of segment tractions over a generic

contactor segment j. The consistent nodal loads corresponding to the
distributed segment tractions are given by

Ry = G t; : (24)
where,
- I [ & K k]
.« L ] )
o t Y %
i t - (25)
Y m m m
b ty ty t
N
KR NS
Myt
:l;".' tn tn tn
"iz, o X y z -
e&f
"u;'_
§§€ s nodal point values of the segment tractions (e.g. tt s th
géi o x-component of the segment traction at node k)
;

| E
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(2x2) cAuUsS
INTEGRATION
POINT

B80O0Y

CONTACTOR

Figure 5 Contactor segment traction distribution ( ﬁt_.k. 3‘!‘. t", and 3"
are the values o? segment tractions at segment nodal points

k, 2, m, and n respectively
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AR,

ik s P
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i
| R

§
The matrix G is
&

where,

>3

S| e (3%

k k k
ARX 'ARy ARZ
£ L L
AR AR 4R
m m m
AR, AR‘y AR,
n n n
4R, L\R‘y 4R,

consistent nodal point forces corresponding to the segment

tractions (e.g., ARt is the x-component of the consistent

nodal load at node k due to the distributed segment tractions
over segment j only. The total force Agk(1'1) at node k- is

the sum of contributions from the tractions acting over all
segments adjoining node k).

coefficient matrix relating nodal values of segment tractions
to the corresponding consistent nodal loads.

evaluated by (2 x 2) numerical integration [3] as

= B9 (27)
iy M M3 My
_ hog Pz Py (28)
h h
1 3w
symmetric
hen 44-

= matrix of values of the bilinear interpolation
functions at the (2 x 2) Gauss integration points

3
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jco
n
N

- {29)

I %

e Y i

diagonal matrix of values of the Jacobian determirant
at the (2 x 2) Gauss integration points

o

o
-

11 = Rpp = Ry = hy, = 0.62200847
g hyp = hyg = hay = hy, = 0.16666666
% hyg = by, = 0.08465820
. .

Using Eq. (24) and summing the contributions from all contactor segments
belonging to the contact region, a coefficient matrix relating the nodal values of
segment tractions to the nodal contact forces (i.e., the contact
forces given by Eq. (23)) is constructed. A Gauss elimination solution is
subsequently performed to obtain the unknown nodal values of the segment
tractions.,

R R PR

o

-

2.5.2 Friction Update of Segment Tractions

Using the recovered segment tractions, the total segment contact force,

b
. 1, is obtained from Eq. (24) as:
55 ¥o=lgt, I (30)
3 - 3 2
¥
- where
R
¥ - 7 < =
! hpdy *ohypdp * o hgdy + gl
h2dy * Mapdp * Magdz * hpgdy
E! [&] = |- - . - (31)
R M3l * o hagly * hygdy * hgyd
3 .
. | Migdy t oMyt Mggls * Mgyl
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Also,
| 1 - [(T'j)T nt] Lo (32)
Inm = LI ngl e
i o 1
I r-T1 (33)

where IﬁJ and ItJ are the total normal and tangential segment contact forces
respectively.

Using InJ and Itj, the procedure for updating the segment tractions to
enforce Coulomb's law of friction is as follows:

® Conditicn of Tension Release

A contactor segment experiences tension release after iteration (i-1) if
the total normal segment contact force is tensile.

Since the segment normal vector gjc points into the continuum of the
contactor body (see Fig. 2), a tensile normal segment force acts in the
opposite direction of gﬁc. Thus, segment tension release is-detected if

.
@ nf <o, | (34)

The segment tractions are updated to zero. Hence

A
!q =0 (35)
where
Ej = matrix of updated nodal point values of segment tractions.

=
£

matrix of consistent segment nodal point forces
corresponding to the updated tractions over segment j.
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Condition of Sliding Contact

A contactor segment experiences sliding contact after iteration (i-1)
if the total segment tangential force exceeds the total segment
frictional capacity, or

10> 1 (@)
where

13|13 ] (38)

1wt n )

total segment frictional capacity

coefficient of friction

=
]

The tangential &omponent of the segment tractions is updated to be a
constant value t, for the entire segment j such that [1],

£ [de] ltj (40)
L -
where
Ay=dy vy +dg+, (41)
= area of segment J
And also
t s d 4
TR A (42)
Ay=G g (43)
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where

. ' T
J CyrnC
t, [ty 0571 [ny7] (44)

nodal point values of the normal component of the
recovered segment tractions

il [f & & t I - (45)

ot
1]

t t

nodal point values of the updated tangential
segment traction (see Eq. (40)).

Note that using Eq. (40), the magnitude of the total tangential segment
force is scaled down to equal the segment frictional capacity. TQe

direction of the updated tangential force is as for the force T J.

However, the direction of the actual relative sliding of the contactor’
segment j (with respect to the target surface) in iteration (i) is not
enforced to be opposite to the direction of the updated tangential force
(see Eqs. (12) and (19)). :

For the condition of contact with no friction, all contactor segments
which do not experience tension release are in sliding contact.

Condition of Sticking Contact

A contactor segment experiences sticking contact after iteration (i-1)
if the total segment tangential force is less than (or equal to) the total
segment frictional capacity, or

i qd

T2 Te

(46)
The segment tractions satisfy Coulomb's law of friction and thus
)

Ej = EJ (47)

Ay o= BBy, (48)
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;ﬁé For the condition of contact with infinite friction, all contactor
= segments which do not experience tension release are in sticking
e contact.,
A
83

By summing the updated segment nodal forces, the total updated contact
forces at the contactor nodes are obtained. For a contactor node k, the

jggé‘ updated force is denoted as t+AF5k(i'1) (see Eq. (15)).
Y
§g§‘ In general, the contact region comprises a number of contactor
el segments and solitary contactor nodes (see Fig. 6). A contactor node k is

denoted as a solitary node in contact if

o
g is 1
¥§ ® The node k is in contact
Ay
. e None of the adjoining contactor segments to node k are in contact.
This condition occurs if for each of the adjoining segments, the
;§§ number of segment nodes in contact is less than four ?see Section 2.1).
0
W) .
o The update of the contact force at a generic solitary node in contact, k,
- W is performed as follows:
. .
L ® QObtain the contact force ARKF"I) at the solitary node (see Eq. (23)).
:iﬁ ] At the solitary node, evaluate the normal vector to the contactor surface,
'ét7 nk » as the average of the normal vectors of the ad301ning surface
- segments,
jﬁ% ® Calculate the normal contact force, Ink. and the tangential
%% contact force, ltk. as
T
iy kK . (i-1) ¢, . C (49)
: I, = [(eR, ) ool
: k = (i"l) k
Low -1 (50)
Y

® Evaluate the updated contact force at node k in analogy to the
evaluation for a contact segment:

S

po
g

For tension release

o
bt e

t+Atlk(i~1) - Q, (51)

2171

Lt
225

oK.
<
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CONTACTOR SEGMENTS

IN CONTACT (ALL NODES
BELONGING TO THE SEGMENTS
ARE IN CONTACT)

) PART OF
Y 2+~ CONTACTOR SURFACE

SOLITARY NODES IN
CONTACT (NONE OF

THE ADJOINING SEGMENTS
ARE IN CONYACT)

Figure 6 Contact region comprised of six contactor segments
in contact and two solitary nodes in contact
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For sliding contact

k
. T
t+at, (i-1) _ k '-n ' k
A = 1ﬂ+ul-;‘,—k-l-lt (52)
-t
For sticking contact
t+AF&k(1-1) - A_Rkh-l). (53)

2,6 Evaluation of the Conditions of Sticking, Sliding and Tension Release at
the Contactor Nodes

Once the conditions of the contactor segments have been decided as
discussed in Section 2.5.2, the aigorithm determines the conditions of the
contactor surface nodes as shown in Table 1.

For the solitary nodes in contact, the conditions at the nodes are given
directly by the calculation of friction update.

A special case arises when a contactor node comes into contact with
the target surface after jteration (i-1), while the node was not in contact after
iteration (i-2). Its condition for iteration (i) is obtained as:

e sliding contact if the contact surfaces are frictionless
‘e sticking contact if the contact surfgces are frictional.

Using the conditions at the contactor nodes for iteration (1), the
matrices t*Atgl(i'l) and t’“?éc("l) are evaluated (see Section 2.4). For

iteration (1), the total number of contact equations is equal to the number of
sliding contactor nodes plus three times the number of sticking contactor nodes.

I11.  SOLUTION METHCD FOR CONTACT-DYNAMICS

The solution of dynamic contact problems is obtained using the procedure
discussed above for static analysis, but now including the effects of inertia
and damping forces. Thus, the incremental equations of equilibrium for
iteration (i) at time t#at are:
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Table 1  STATE OF CONTACTOR NuDE AS DECIDED BY
STATES OF ADJOINING CONTACTOR SEGMENTS

s A e

STATE OF ADJOINING CONTACTOR SEGMENTS STATE OF
CONTACTOR NODE

L T

One adjoining segment Other adjoining segments

T
e A

Dl LA g0

» Sticking Sticking Sticking
Sliding

Lt
oy M

Tension release

Sliding Sliding Sliding

2 Tension release

> Tension release Tension release ~ Tension
release
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il -
¥ 0 A'_U'(i) t 0 () +1.3t5(i-1) 0 0 t+At£>‘(i-1) Ay_(i)
oollo [ooe * 0 .Q+t+At.|$>\“-1)T 0 i
N n
g
;iu§ o
mf Fmtg Mo +At_q(1f1) ¢ +Aty_(1-l) t+At£(1-1)]+t+At&(1 -1)
. | Ylee]| o Tooll o [ o iy ®
where,
Ag(i) = Vector of incremental velecities in iteration (i)
Aﬂ(i) = Vector of incremental accelerations ir iteration (1)
t+b§g(i'1) = Vector of velocities after iteration (i-1)
t+°§§(i'l) = Vector of accelerations after iteration (i-1)
M = Mass matrix of the contastor and target bodies
e = Viscous damping matrix for the continua of the

contactor and target bodies -

tMtl(.A(i-l) and wtﬁc“'l) is

The evaluation of the contact matrices
performed as in static analysis.

For the contactor surface nodes belonging to the region of contact, the
contact forces after iteration (1) (prior to updating) are obtained as

-

AB(M) - t+At£(i-1) .M wstﬂ(i-l) . c t+Atg(1-1) . ity .

(85)

ier e aomis pE .
Caris ) R

Sis

! [

-

™,

This vector is used as described in Section 2.5 to evaluate the updated
nodal point contact forces t AtR (1- l)
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IV, ITERATION STRATEGY AND CONVERGENCE CRITERIA

For iteration (i) at time t+at, the sequence of calculations performed
in the contact solution is as follows:

® Use the nodal forces Ag("l) to recover segment tractions on the
contactor surface. Update the segment tractions and the forces acting
at the solitary nodes in contact to satisfy Coulomb's law of
) friction and calculate the updated contact surface forces t+At3C("1)
(see Section 2.5).

® Use the current geometry after iteration (i-1) to determine the
target segment of contact for each contactor node belonging to the
contact region. Also evaluate the material overlap and the area
coordinates of the physicai point of contact.

® Detect if any new contactor nodes have come into contact after
iteration (i-1).

® Evaluate the states of the contactor nodes for iteration (i) (see
Section 2.6).

e Evaluate the contact matrices t*Atﬁx(i'l) and t+A?gc(i'1) and
assemble all matrices as given in Eq. (12). Then solve Eq. (12)
to obtain the unknown quantities Ag(i) and ar''’,

Note that the increments in contact forces, Ax(i). obtained from the
solution of Eq. (12) are not used subsequently in any calculation. The
total contact forces (prior to updating) after each iteration are simply
obtained as given by Eq. (23).

Convergence of solution is accepted after iteration (i) if the following
criteria are simultaneousiy satisfied:

® Energy convergence criterion

N , | :
. Ag(‘) [t¥itg . t+At£(x-1) - M t+Atg(i-i) - Et%tg(i-l) « Tty (i-1)

- <ETOL

T
Ag(“ [tHotg .t . N t+Atﬂ(o) - ¢ tmtg(o) R tBC]

(56)
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where ETOL is an energy convergence tolerance..

_;;%g ® Force convergence criterion
i
o "t+AtR Jteatp(i-1) oy teatp(i-1) o teaty(i-1) | teatp (4-1) "
- . B .. ¢ 2 5 gL
;iﬁ RNORM
o (57)
WM
el where RNORM is a reference force for convergence [7] and RTOL is a force

convergence tolerance, In the evaluation of the Euclidean norm in Eq. (57),

5l§§ only the transiational degrees of freedom are considered.
_g}' For the rotational degrees of freedom, a moment convergence criterion
.;-%ﬁ is specified in analogy to the force convergence criterion.
,}:
n“ﬂ%, ® Contact Force Convergence Criterion
“ -1 . -2 |
. - = 2
§ < RCTOL (58)
it "A&H'l) |+ roons
Lo 2
\]
_ §? where RCTOL is a contact force convergence tolerance and RCUNSM is a
Q% small number., Note that RCONSM makes the denominator of Eq., (58)
K nonzero when " Ag(i'l) 'lz = 0 (i.e., no contact cond’iions exist

' during iteration (i-1)).
V. TIME INTEGRATION OF THE EQUILIBRIUIM EQUATIONS FOR DYNAMIC CONTACT
A valid dynamic contact solution must satisfy the following two criteria:

Ty ‘ ® The tota) energy of the system is conserved

0 ® The impulse-momentum relationship is satisfied for each body.
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Using the Newmark method of impiicit time integration, the acceleration and
velocity vectors after iteration (i-1) at time t+at are [3]

t+Atg( i=1) 1

- 1 t+ i=- * .
= STAt 2 ( Aty-('l 1)_ty.) - E‘Tt.g - (Z:T' -1 )ty- (59)
where,
ayd = Newmark parameters
tg,tg,tg = displacement, velocity, and acceleration vectors at
time t respectively
tat (i-1) _ . . .
U = displacement vector after iteration (i-1) at time t+at .

A}so. Ehe incremental acceleration and velocity vectors in iteration (i) are
given by

Aﬁ“) ™ E(%TP A_U_(i) (51)
L\g(i) a—u%f- Ag(i). (62)

Equations (59) to (62) are used in the incremental equations of equilibrium
for dynamic contact (see Eq. (54)). Since the calculated response depends
on the values of the Newmark parameters o and 6, the objective must be to
choose optimum parameters for the solution.

In search for suitable a and § parameters, the solutions to some simple
numerical experiments of two unequal colliding point masses were considered.
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The experiments were repeated for various combinations of impact velocities.
The study showed that the criteria of energy and momentum balance
“are satisfied when a=} and §=4 are used. With other values of a-and §,

the energy and momentum equations are not necessarily satisfied.

Another numerical experiment involves the longitudinal impact of two
identical bars which are moving towards each other with a constant velocity
(see Fig. 7a,b). The bar material is linezr elastic and the contact
surfaces are frictionless. For the solution obtained using a=4 and §=4,
the total energy of the bar (strain energy + kinetic energy) is conserved
throughout the solution and the impulse-momentum relationship is satisfied.
Good agreement is obtained between the numerical solution and the analytical
solution [4] for the stress generated due to impact (see Fig. 7c).

XA
&l

In addition, the integration scheme with a=% and &=} has the
following desirable characteristics (considering linear analysis):

s

-,

L
L
1

e

e The method is unconditionally stable since the

condition a & § (6+3)2 is satisfied.

A

A

- BRI

e The scheme gives no amplitude decay, since § = §,

?.
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e The percentage period elongation is reasonably small,
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VI. NUMERICAL SOLUTIONS

The algorithm presented in the previous sections was implemented in
the computer program ADINA [7] and the results of some sample analyses are
presented in this section. In these analyses, the primary objective was to
study the performance of the algorithm under various conditions of contact.

6.1 Analysis of Axisymmetric Hert2 Contact Problems

A sphere of radius R=5 is considered to come into contact with a flat

rigid surface (see Fig. 8). The analysis is performed for the following
B two conditions:

o .
%ﬁ ® Static analysis of contact when the sphere is subjected to an externally
L applied total force Pe.523k (see Fig. 8a)
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a) Problem considered

Figure 8 Analysis of Hertz axisymmetric contact problem
( M.N.O. formulation denotes materially-nonlinear-only
formulation [3] )
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e Dynamic analysis of contact when the sphere impacts the rigid
surface. Prior to impact, the sphere has an initial velocity V=-3k.

6.1.1 Finite Element Discretization

Cue to symmetry of the sphere geometry and the applied loading, only a
thin wedge from the sphere continuum is discretized (see Fig. 8b,c). The wedge
is bounded by its two semicircular sides and the enclosed wedge angle is
1 degree. The wedge is discretized using eight node 3-D solid elements.

For each node on Face 1 of the wedge, the degree-of-freedom normal
to Face 1 (i.e., along the skew coordinate direction yl) is deleted. Similarly,

for each node on Face 2 of the wedge, the degree-of-freedom normal to Face 2
(i.e., along the skew coordinate direction yz) is deleted.

The contactor surface is defined over the wedge boundary (see Fig. 8b). The
target surface is defined to be the flat rigid surface, which is modeled by
specifying target nodes with no degrees of freedom. In an X==Y plane view, the
target surface is triangular in shape.

6.1.2 Static Analysis

The wedge is subjected to a uniformly distributed body force along the
negative z direction such that the resultant of the body force corresponds
to P=-523k acting at the center of the sphere (i.e., the total force applied
onto the wedge equals -(523/360)k).

Figure 9 shows the calculated contact tractions and a comparison with the
Hertz analytical solution [5].

6.1.3 Dynamic Analysis

For all nodes belonging to the wedge, an initial velocity V=-3k was
assigned. The time integration of the dynamic response was performed usiny

the Newmark parameters a=4 and 6=4 (see Section 5). The time step was equal
to 4t=0.01 sec.

Figure 10 shows the calculated contact tractions and a comparison with the
Hertz analytical solution [§].

6.2 Analysis of Compressed Spheres Subjected to a Torsional Moment

Figure 11 shows two identical spheres which are first compressed onto
each other (P=-222k) and then subjected to a twisting moment(M=52k}.
The coefficient of friction is very large (infinite).
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Figure 8 Continued
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One 3-D element is used across the wedge thickness ( see Fig. 8b ).

Figure 8 Continued
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Due to the symmetry in geometry and the skew symmetry of the applied
loading, we can model the problem by considering a single sphere first
compressed onto a flat rigid surface and then subjected to a twisting moment.
This sphere is modeled as a thin wedge, as in the solutions of Section 6.1.

The finite element model of the wedge is as shown in Figs. 8b,c. To
enforce the condition of skew-symmetry, the X19¥1s and zy displacements of
the nodes on Face 1 are constrained to be respectively equal to the
Xo3¥ps and Z, displacements of the corresponding nodes on Face 2.

v The wedge is first subjected to a uniformly distributed body force along
the negative z direction such that the resultant of the body force corresponds
to P=-222k acting at the center of the sphere. As a result, a region of
contact between the sphere and the rigid surface is estab11shed (radius

of contact=0.9).

To apply the twisting moment, the wedge is subjected to a distributed
lateral body force such that at any point ?x.y,z) within the wedge, the body
force per unit volume, 0, is
b=Cri 63
i (63)

where,

C = constant

r s xz + y2 (64)

= distance of point (x,y,2) from the Z axis

i = ¥ i+

LIS i (65)

58X

= unit vector orthogonal to xi + yj

For C=0.01, the applied lateral body force corresponds to a total twisting
moment M=52k applied to the sphere.

Figure 12 shows the calculated shearing traction in the contact region
~and a comparison with the analytical solution [6].

6.3 Dynamic Analysis of Frictional Sliding of a Point Mass

Figure 13 shows a mass, m=0.2, attached to two identical springs which
are anchored to a flat riyid surface. The rigid surface lies in the XY
plane and the mass rests on the surface. The coefficient of friction between
the mass and tie surface is 0.15. Both springs have the same linear
force-deflection relationship and geometric nonlinearities are included in the
analysis.

TRy 55




oy ﬁ
O a8t i
_‘):- .
e b APPLIED TORQUE, M=82)
RADIUS OF CONTACT asO.9
i
,;ﬁ'f s b
RN
e
. 2&: o |~ ANALYTICAL
0 SOLUTION
AR 3.0
P
T
Bk
= |
- 28}
§
& 20l
:
:
® b
§
-
o -
o8~
1 1 1 ] i
a2 0.4 ae ae X

(DISTANCE FRON CENTER)/e
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a) Problem considered

Figure 13 Dynamic analysis of frictional sliding of a point mass
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The following two cases are considered to study effects of friction on the
vibrations of the mass-spring system:

-

. b

o The point mass is given an initial velocity of -1.0i and is then released.
The movement of the mass takes place along the x-direction and the motion

ey
2
o

, ?i is resisted by the developed frictional force (when the mass is moving
'j& along the positive x direction, the frictional force acting on the
. gﬁ mass equals -0,30i).
.\!
’ ® The point mass is given an initial displacement of -2.0j and is then
g released. The movement of the mass takes place along the y direction and
B the motion is resisted by the developed frictional force (when the mass
E is moving along the positive y direction, the frictional force acting
$ on the mass equals -0.30§). '
A
‘ Jarget Surface The flat rigid surface is chosen to be the target surface and
s is modeled using four nodes each with no degrees of freedom.
L
% Contactor Surface The mass-spring system is chosen to be the contactor body.
i' An auxiliary node (fixed in space) is used to define the contactor surface
B consisting of two contactor segments (see Figure 13b). The auxiliary node
M lies outside the region of the rigid target surface and thus is not in
- contact throughout the analysis. As a result, nodes 1,2, and 3 are treated
=\ as solitary nodes in contact. The direction of the normal vector at the
_QF solitary nodes is obtained from the geometry of the contactor segments.
5 Figure 14 shows the numerical results for the two cases considered.
) The obtained solutions satisfy the criteria of energy and momentum balance
and, for each case, the work done by the frictional force equals the
% difference between the initial energy and the final energy of the system.
.g; VIT. CONCLUDING REMARKS
. An algorithm for the solution of static and dymamic three-dimensiona!
b contact problems has been presented. The solution procedure uses a Lagrange
0 multiplier technique to incrementally impose the constraints of compatible
o surface displacements due to contact. The contact forces are evaluated from
o distributed tractions that act on the contacting surfaces. These tractions are
. evaluated from the nodal point forces, which correspond to the interna) element

stresses and the externally applied loading, and the frictional conditions
based on Coulomb's Taw. Some solution results obtained using the algorithm
N have been presented to demonstrate the applicability and performance of the
'% solution procedure. -
o
]
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% Figure 13 Continued '
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Using the algorithm already a wide variety of contact problems
can be analyzed. However, there is an ever increasing need to solve more
complex contact problems and additional research should be performed to
broaden the applicability and effectiveness of the algorithm. This research
should focus, for example, on the following items:

o Line searching in equilibrium iterations in the presence of contact.
¢ Development of the algorithm for explicit time integration.

® Improvement and evaluation of accuracy and effectiveness of implicit and
explicit time integration schemes for dynamic contact.

® Modeling of contact surfaces using higher order surface segments.
e Evaluation of various friction laws and corresponding implementation

for improved modeling of interface conditions and solution
effectiveness.

These studies would be very useful to gain a deeper understanding of
contact phenomena.
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A

- LIST OF SYMBOLS
_'ﬁ; I Identity matrix.

bl

'$ Aj Area of segment j.

A

Viscous damping matrix for the continua of the contactor and
target bodies.

SRR
jo

3
Aty oy <l

@ ETOL Energy convergence tolerance.
i
. t+at (i-1) Elements of vector of nodal point forces equivalent to element
"3 F stresses after iteration (i-1) corresponding to degrees of
S %
3 freedom of node k.

Coefficient matrix relating nodal values of sEgment tractions to
the corresponding consistent nodal loads. = HJ H

‘ﬁl’<_ - GO
[

3 H Matrix of values of the bilinear interpolation function at the
"§ Gaussian integration points.
-
’-ﬁ J Diagonal matrix of values of the Jacobian determinant at The
Wl Gaussian integration points.
\ t+at (1-1) Tangent stiffness matrix including material and geometric
é K nonlinearities after iteratiom (i-1).
¢ !
d@ t+at (i-1) Tangent stiffness matrix for the contactor body after iteration
) Ko WD),
t+at (i-1) Tangent stiffness matrix for the target body after iteration
l K T (i-1).
g t+at (i-1) Contact matrix to include the constraints of compatible surface
5 5-1 displacements after iteration (1i-1).
? M Mass matrix of the contactor and target bodies.
8
)
i RTOL Force convergence tolerance.
¢
., N
lﬁ t+pt Elements of vector of total applied external forces at time t4pt
Ek corresponding to the degrees of freedom of node k.
g : RCTOL Contact force convergence tolerance.
A
9
~3 AR: x~component of the consistent nodal load at node k due to the
L distributed seguent tractions over segment j.
% qgﬂ Congistent nodal point force vectors corresponding to the segmeat
‘ﬁ tractions.
': AR: x-component of the consistent nodal load at node k due to the

-

distributed segment tractious over segment j only.
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(1-1)

W A2

3,

o(i)

Av

i

t+AtU( i=1)

t+AtU( i-1)

b

1,3,k

LIST OF SYMBOLS (Continued)

Out-of-balance force vector at iteratiom (i-1).
Total normal segment contact force.

Total tangential segment contact force.
Total segment frictional capacity.

Total segment contact force.

Vector of incremental velocities in iteration (i).
Vector of incremental accelerations in iteration (i).
Vector of velocities after iteration (i-1).

Vector of accelerations after iteration (i-1).
Body force per unit volume.

Unit vectors along coordinate axes.

Nodal point values of the normal component of the recovered
segment tractions.

Nodal point values of the updated tamgential segment traction.
Matrix of updated nodal point values of seguent tractiouns.

Displacement, velocity, and acceleration vectors at time t
regpectively.

Normal vector to the contactor segment j.
Normal vector to the target segmeat j.

X~coaponent of the segment traction at node k.

Nodal point values of the segwent tractions.
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LIST OF SYMBOLS (Continued)

ﬂ':'-
ey

% t+at (1) Current global coordinates of a point or a node k at time t+at at
\ iteration (1).
R 2;5" ﬁ(
- 148 (1)
'(gﬁl Agk Vector of incremental displacement of node k in iteration (i).
-y a, & Newmark parameters.
o, [ ]
Fﬂ% aieiyi Triangular area coordinates of point at iteration 1.
 ;? . 51 Matrix of consistent segment nodal point forces corresponding to
.%ﬁ the updated tractions over segment j.
" W Coefficient of friction.
* l'.
) (1)
W LYY Vector of increments in contact forces at contactor node k in
Rl k iteration (1).
s
-;;; t+at (i-1) Contact force at contactor node k after iteration {1-1)
‘ ﬁij P corresponding to the x,y and z coordinate axes.
Uty
. ol
"i{» t+at (1) Vector of material overlaps at contactor node k at iteration (i).
L
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